FEATURES OF OXIDATIVE DETERIORATION OF PELENGAS TISSUES DURING STORAGE IN A CHILLED STATE
Abstract
It is known that the processes of oxidative spoilage of fish largely depend on both the fat content and its unsaturation in its tissues, and the activity of endogenous antioxidants. The purpose of this study was to find out the specifics of oxidative deterioration of pelingas tissues with different fat content during refrigerated storage. A comparative analysis of the oxidative deterioration of the tissues of the back and abdomen during refrigerated storage of whole carcasses of this fish was carried out. To assess the level of oxidative deterioration, the dynamics of the content of end products of lipoperoxidation and the activity of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) were analyzed within the storage period defined by DSTU 3326-96 (12 days). The results of the conducted research proved that during the storage of pelingas carcasses at a temperature of 0-20C for the specified period, the activation of lipid peroxidation processes was characterized by a certain tissue specificity. It was found that in the back of the Pelingas an increase in the content of the end products of lipoperoxidation and, accordingly, the deactivation of the antioxidant system was established immediately after the blood circulation was stopped. In the stomach of pelingas, the processes of deactivation of endogenous antioxidants began only on the 9th day of fish storage, but they were more accelerated. At the end of the experiment, the content of secondary LPO products in the back of the Pelingas is 3.55 times lower than in the abdomen. However, taking into account the high activity of all three studied antioxidant enzymes in the belly of the pelingas, it can be concluded that the quality of this product when stored at a temperature of 0-20C even after 12 days remains at a sufficient level, which can contribute to its wide distribution and significant demand among consumers.
References
Данченко О. О., Яковійчук О. В., Здоровцева Л. М., Данченко М. М., Майборода Д. О. Особливості процесів пероксидного окиснення та змін жирнокислотного складу ліпідів сьомги при зберіганні. Науковий вісник ТДАТУ. 2018. Вип. 8, том 2. DOI: https://doi.org/10.31388/2220-8674-2018-2-54
Іонов І. А. Критерії та методи контролю метаболізму в організмі тварин та птахів. Харків : Інститут тваринництва НААН, 2011. С. 224–225.
Сабодаш В. М., Семененк Л. І. Еколого-біологічні основи акліматизації далекосхідної кефалі-пелінгаса (Mugal SO-IUY) у водоймах України. Vestnik zoologii. 1998. Supplement № 6.
Abdelrahman, S. Talab and Mohamed H. Ghanem. (2021) Effects of different salt concentrations on the quality alterations and shelf-life of the grey mullet fish. Egyptian Journal of Aquatic Biology & Fisheries. Vol. 25(1): 583–595. URL: http://ejabf.journals.ekb.eg
Abreu I. A., Cabelli D. E. (2010) Superoxide dismutase’s review of the metal-associated mechanistic variations. Biochim Biophys Acta. Vol. 1804, № 2. P. 263–274.
Alptekin О. Tuekel S., Yildirim D., Alagoez D. (2010) Immobilization of catalase onto Eupergit C and its characterization. J. Mol. Catal. Vol. 64, № 3-4. P. 177–183.
Ana M. Duarte, Frederica Silva, Filipa R. Pinto, Sónia Barroso and Maria Manuel Gil (2020) Quality Assessment of Chilled and Frozen Fish—Mini Review. Foods. 9, 1739; DOI: https://doi.org/10.3390/foods9121739
Cao, S. M. et al. (2018) Activities of Endogenous Lipase and Lipolysis Oxidation of Low-Salt Lactic Acid-Fermented Fish (Decapterus maruadsi). Journal of Oleo Science. Vol. 67, № 4. Р. 445–453. DOI: https://doi.org/10.5650/jos.ess17176
Fidalgo, L. G., Simões, M. M., Casal, S., Lopes-da-Silva, J. A., Delgadillo, I., & Saraiva, J. A. (2021) Enhanced preservation of vacuum-packaged Atlantic salmon by hyperbaric storage at room temperature versus efrigeration. Scientific Reports, 11(1), 1668. DOI: http://dx.doi.org/10.1038/s41598-021-81047-4
Flores-Gallegos, A. C. et al. (2019) Hydrolases of Halophilic Origin With Importance for the Food Industry / Enzymes in Food Biotechnology. Р. 197–219. DOI: https://doi.org/10.1016/b978-0-12-813280-7.00013-x
Ines Ben Khemis, Neila Hamza and Saloua Sadok (2019). Nutritional quality of the fresh and processed grey mullet (Mugilidae) products: A short review including data concerning fish from freshwater. Aquat. Living Resour. 3. DOI: https://doi.org/10.1051/alr/2018026
Jéssica Tavares, Ana Martins, Liliana G. Fidalgo, Vasco Lima, Renata A. Amaral, Carlos A. Pinto, Ana M. Silva and Jorge A. Saraiva (2021) Fresh Fish Degradation and Advances in Preservation Using Physical Emerging Technologies. Foods. 10, 780. DOI: https://doi.org/10.3390/foods10040780
Keys, D. R., Lowder, A. C., & Mireles DeWitt, C. A. (2018) Conditions for the effective chilling of fish using a nano-sized ice slurry. Journal of Food Processing and Preservation, 42(3), e13564. DOI: http://dx.doi.org/10.1111/jfpp.13564
Lianxin Geng, Kunlun Liu and Huiyan Zhang (2023) Lipid oxidation in foods and its implications on proteins. Frontiers in Nutrition. DOI: https://doi.org/10.3389/fnut.2023.1192199
Lubos, E. (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities / E. Lubos, J. Loscalzo, D. E. Handy. // Antioxid Redox Signal. Vol. 15, № 7. P. 1957–1997.
Malik, I. A., Elgasim, E. A., Adiamo, O. Q., Ali, A. A., Mohamed Ahmed I. A. (2021) Effect of frozen storage on the biochemical composition of five commercial freshwater fish species from River Nile, Sudan. Food Sci Nutr. 9: 3758–3767. DOI: https://doi.org/10.1002/fsn3.2340
Mason, R. P., & Sherratt, S. C. (2017) Omega-3 fatty acid fish oil dietary supplements contain saturated fats and oxidized lipids that may interfere with their intended biological benefits. Biochemical and Biophysical Research Communications, 483(1), 425–429.
Mathew, S., Raman, M., Parameswaran, M. K., & Rajan, D. P. (2019) Fish and fishery products analysis: a theoretical and practical perspective Singapore: Springer Nature. DOI: http://dx.doi.org/10.1007/978-981-32-9574-2
Naho Nakazawa, Emiko Okazaki (2020) Recent research on factors influencing the quality of frozen seafood Fisheries Science. 86:231–244. DOI: https://doi.org/10.1007/s12562-020-01402-8
Tacon, A. G., & Metian, M. (2018) Food matters: fish, income, and food supply: a comparative analysis. Reviews in Fisheries Science & Aquaculture, 26(1), 15–28. DOI: http://dx.doi.org/10.1080/23308249.2017.1328659
Wright, M. H., Matthews, B., Arnold, M. S. J., Greene, A. C., & Cock, I. E. (2016) The prevention of fish spoilage by high antioxidant Australian culinary plants: shewanella putrefaciens growth inhibition. International Journal of Food Science & Technology, 51(3), 801–813. DOI: http://dx.doi.org/10.1111/ijfs.13026
Danchenko, O. O., Yakovijchuk, O. V., Zdorovtceva, L. M., Danchenko, M. M., Majboroda, D. O. (2018) Osoblyvosti procesiv peroksydnogo okysnennya ta zmin zhyrnokyslotnogo skladu lipidiv somgy pry zberiganni. Naukovyj visnyk TDATU, vol. 8, no 2. DOI: https://doi.org/10.31388/2220-8674-2018-2-54
Ionov, I. A. (2011) Kriterii i metody kontrolia metabolizma v organizme zhivotnykh i ptits. Kharkov: Institut zhivotnovodstva NAAN. P. 224–225.
Sabodash, V. M., Semenenko, L. I. (1998) Ekologo-biologichni osnovy aklimatyzaciyi dalekosxidnoyi kefali-pelingasa (Mugal SO-IUY) u vodojmax Ukrayiny. Vestnik zoologii. Supplement, no 6.
Abdelrahman, S. Talab and Mohamed H. Ghanem (2021) Effects of different salt concentrations on the quality alterations and shelf-life of the grey mullet fish. Egyptian Journal of Aquatic Biology & Fisheries. Vol. 25(1): 583–595. Available at: http://ejabf.journals.ekb.eg.
Abreu, I. A., Cabelli, D. E. (2010) Superoxide dismutase’s review of the metal-associated mechanistic variations. Biochim Biophys Acta. Vol. 1804, № 2. P. 263–274.
Alptekin, О., Tuekel, S., Yildirim, D., Alagoez, D. (2010) Immobilization of catalase onto Eupergit C and its characterization. J. Mol. Catal. Vol. 64, № 3-4. P. 177–183.
Ana M. Duarte, Frederica Silva, Filipa R. Pinto, Sónia Barroso and Maria Manuel Gil (2020) Quality Assessment of Chilled and Frozen Fish—Mini Review. Foods. 9, 1739; DOI: https://doi.org/10.3390/foods9121739
Cao, S. M. et al. (2018) Activities of Endogenous Lipase and Lipolysis Oxidation of Low-Salt Lactic Acid-Fermented Fish (Decapterus maruadsi). Journal of Oleo Science. Vol. 67, № 4. Р. 445–453. DOI: https://doi.org/10.5650/jos.ess17176.
Fidalgo, L. G., Simões, M. M., Casal, S., Lopes-da-Silva, J. A., Delgadillo, I., & Saraiva, J. A. (2021) Enhanced preservation of vacuum-packaged Atlantic salmon by hyperbaric storage at room temperature versus efrigeration. Scientific Reports, 11(1), 1668. DOI: http://dx.doi.org/10.1038/s41598-021-81047-4
Flores-Gallegos, A. C. et al. (2019) Hydrolases of Halophilic Origin with Importance for the Food Industry. Enzymes in Food Biotechnology. Р. 197–219. DOI: https://doi.org/10.1016/b978-0-12-813280-7.00013-x
Ines Ben Khemis, Neila Hamza and Saloua Sadok (2019) Nutritional quality of the fresh and processed grey mullet (Mugilidae) products: A short review including data concerning fish from freshwater. Aquat. Living Resour, 3. DOI: https://doi.org/10.1051/alr/2018026
Jéssica Tavares, Ana Martins, Liliana G. Fidalgo, Vasco Lima, Renata A. Amaral, Carlos A. Pinto, Ana M. Silva and Jorge A. Saraiva (2021) Fresh Fish Degradation and Advances in Preservation Using Physical Emerging Technologies. Foods. 10, 780. DOI: https://doi.org/10.3390/foods10040780
Keys, D. R., Lowder, A. C., & Mireles DeWitt, C. A. (2018) Conditions for the effective chilling of fish using a nano-sized ice slurry. Journal of Food Processing and Preservation, 42(3), e13564. DOI: http://dx.doi.org/10.1111/jfpp.13564
Lianxin Geng, Kunlun Liu and Huiyan Zhang (2023).Lipid oxidation in foods and its implications on proteins. Frontiers in Nutrition. DOI: https://doi.org/10.3389/fnut.2023.1192199
Lubos E., Loscalzo J., Handy D. E. (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. Vol. 15, № 7. P. 1957–1997.
Malik, I. A., Elgasim, E. A., Adiamo, O. Q., Ali, A. A., Mohamed Ahmed I. A. (2021) Effect of frozen storage on the biochemical composition of five commercial freshwater fish species from River Nile, Sudan. Food Sci Nutr. 9:3758–3767. DOI: https://doi.org/10.1002/fsn3.2340.
Mason, R. P., & Sherratt, S. C. (2017) Omega-3 fatty acid fish oil dietary supplements contain saturated fats and oxidized lipids that may interfere with their intended biological benefits. Biochemical and Biophysical Research Communications, 483(1), 425–429.
Mathew, S., Raman, M., Parameswaran, M. K., & Rajan, D. P. (2019) Fish and fishery products analysis: a theoretical and practical perspective Singapore: Springer Nature. DOI: http://dx.doi.org/10.1007/978-981-32-9574-2
Naho Nakazawa, Emiko Okazaki (2020) Recent research on factors influencing the quality of frozen seafood. Fisheries Science, 86:231–244. DOI: https://doi.org/10.1007/s12562-020-01402-8
Tacon, A. G., & Metian, M. (2018) Food matters: fish, income, and food supply: a comparative analysis. Reviews in Fisheries Science & Aquaculture, 26(1), 15–28. DOI: http://dx.doi.org/10.1080/23308249.2017.1328659
Wright, M. H., Matthews, B., Arnold, M. S. J., Greene, A. C., & Cock, I. E. (2016) The prevention of fish spoilage by high antioxidant Australian culinary plants: shewanella putrefaciens growth inhibition. International Journal of Food Science & Technology, 51(3), 801–813. DOI: http://dx.doi.org/10.1111/ijfs.13026